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The steady separation-free flow around a flat cascade by an ideal gas is dis- 
cussed. Most of the attention is devoted to blocking regimes with a supersonic 
velocity in the entire flow and its subsonic component normal to the front of 
the cascade. A "directing action" of the cascade (the direction of the velocity 
and the Mach number of the advancing flow turn out to be related) is exhibited in 
these regimes which is a consequence of an independence of the flow in front of 
the cascade of the conditions behind it [1-5]. The most widespread method of 
their calculation [3, 4, 6] is based on the method of characteristics with estab- 
lishment of the flow outside the cascade in a timelike coordinate. Although the 
integrated conservation laws also permit finding the parameters at infinity, the 
numerical construction of as long-range fields as desired with periodic sequences 
of attenuating discontinuities is practically impossible. The approximation of 
nonlinear acoustics (ANA) [7, 8] is justified here, as it is very effective in 
such problems [8-12]. A combination of ANA, the integrated conservation laws, and 
establishment in a calculation according to [13, 14] with isolation of the dis- 
continuities has been realized in [5] for the construction of a solution on the 
entrance section of a cascade and everywhere in front of it. Below the method of 
[5] is extended to the entire flow and simplified even more. The flow on the en- 
trance section of the cascade is, just as ~ in [3], found in the approximation of a 
simple wave, in the rest of it and in a finite strip behind it -- the flow is found 
with the help of the "straight-through" version of the scheme of [13, 14], and in 
the "long-range field" -- in the ANA. A simpler version is proposed. In it ANA is 
applied outside the cascade and the linear theory is applied inside the cascade. 
Examples of the calculations are given. Similarity laws are formulated for all 
the regimes of streamline flow. 

i. The scheme for flow around a cascade in supersonic closed regimes is illustrated in 
Fig. la, in which xy and sn are rectangular coordinates, the thick lines are shock waves, and 
the thin ones are the characteristics (the dashed lines are the neutral characteristics going 
out to infinity). A gas flows from left to right, and in front of and behind the cascade 
the velocity component normal to its front is subsonic. Therefore as n § one should set 
a single boundary condition, for example, specify the pressure p or, as is done below, one 
of the Riemann invariants. Depending on its magnitude and the values of the parameters of 
the advancing flow, the effect of this condition is limited on the left by a discontinuity 
or a closing c+-characteristic fe of a bunch of rarefaction waves emerging from f. If ba ~ 
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is the c § characteristic arriving on the leading edge of the upper profile (we are talking 

about an intervane channel), only the segment ab of the upper generatrix of the lower profile 

affects the flow in front of the cascade. We shall begin the solution of the problem from a 

discussion of the flow in the halfplane n > 0 and in the triangle abe ~ we shall perform an 

initial analysis of the flow for n > 0 by assuming that the parameters are specified at n = 0~ 

Then having clarified the structure of the flow for n > 0, we shall give a method for its con- 

struction and justify the possibility of using a solution of the type of a simple wave in the 

part of the intervane channel afga~ adjacent to aa ~ In the regimes under discussion the 
shock waves which emerge upward through the flow are usually [5] weak already on the leading 
edges of the profiles. Therefore the wave structures in front of the leading front can be 

described within the framework of ANA. Let 6 T = 6T(n) be the increment to ~ on the discon- 
tinuity at a distance n from the leading front, and let o be the specific entropy. Then 5~ = 
O(cZ), where ~ = 5p, the total variation of ~ in an infinite sequence of damped discontinui- 

ties. is, as has been shown in [ii], O(s2), and in front of the cascade 

= a_ + O (~), 2i + V 2 = 2i_ + V~=-- 21_. (i.i) 

Here i is the specific enthalpy, V = IV], and V is the velocity vector; a minus sign is af- 
fixed to parameters of the advancing flow. The second equality is valid everywhere. 

In regions of continuity of the flow on the characteristics 

dn/ds = tg(O ~-  9),  dg/dx = tg(~ _ ~), dO -~_ d~ = ---4- [ V M  -~ - -  i / (pV~)ldp~ ( 1 . 2 )  

where ~ and ~ = ~ + ~ are angles formed by V with the s and x axes, ~ is the adjustment angle 

of the cascade (Fig. la, 0 < y ~ v/2), M = V/a and V = arcsin (l/M) are the Mach number and 
angle~ a is the speed of sound, and P is the density; the upper (lower) sign corresponds to 

the c (c-)-characteristic. By virtue of (i.i) and the equations of state i = i(p, ~) and 
p = p(p, ~), the factor in front of dp in (1.2) is, to within an accuracy of 0(~ 2) inclusive- 

ly, a known function only of p, and one can rewrite the third Eq. (1.2) in the form 

d ]  • ~ d [0 ~ r (p)] = O (e 2) dp,  �9 (p) = 2 pv ~ 
P,  

Here J• are the Riemann invariants; an asterisk is affixed to the critical parameters corre- 
sponding to M = 1 when o = ~_. If the characteristic intersects a discontinuity of the oppo- 
site family, the variation of the invariant corresponding to it is, just as also for if, O(c3)~ 
and in this case the total variation of J- is 0(~2). Thence with (1.3) taken into account we 

find that if (i -- p/p_) is small (later on this is assumed), when n ~ 0 

O - -  O_ - -  0 ~ )  + ~ ( p - )  : O(s2).  ( 1 . 4 )  

Similarly, if Eo = 5Po = 5p(0) is the difference in p on the discontinuity at the leading 
point of the profile and so is the s-coordinate of the point of the line y = x tan u or n = 0 
from which the c+-characteristic in question emerges, on it 

o + �9 (p} = J+ (So) + o (~ ) .  ( 1 . 5 )  

The residual term in (1.5) is estimated on the assumption that p varies by O(so) along each 

c+-characteristic. Actually, the indicated variation is O(s~). This leads to the replace- 
ment of O(E~) in (1.5) by 0(~), which, however, does not change the subsequent estimates. 

By virtue of the periodicity in s with the period d, where d is the cascade spacing, we 
shall consider a single strip resting on a segment of the s axis of length d and bounded by 
lines which are superposable by a shift along s, for example, adjacent discontinuities or 
neutral characteristics. According to (i.i), (1.4), and (1.5), the flow in it is, to within 
an accuracy of Eo inclusively, a simple wave with rectilinear c+-characteristics, each of 
which (except for the neutral one) is incident on one of the discontinuities. The intensity 
of a discontinuity is given by the difference in p or J+, i.e., 6J +. The righthand side of 
(1.4), which is related to the increments to o and J- upon the intersection of streamlines 
and the c--characteristics with an infinite sequence of damped discontinuities, character- 
izes the variation of the lefthand side of the very same equation in the entire flow, for ex- 
ample, from n = 0 to n >> d. For nearby points the righthand sides of (1.4), being 0(~2), 
differ by 0(~3). With account taken of what has been said we find from (1.3)-(1.5) 

5p = [pV2/(2 ~ / r ~ - ~ _  t ) ] _ S j +  + O(s~), 8 J  + = J+(s+) - -  J+(s-) .  ( 1 . 6 )  
+ 

Here s- are the values of So for the c -characteristics which have been incident on a dis- 
continuity for various directions. 
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Let • = cot(@ + ~) be known for n = 0. Since the flow under discussion is a simple 
wave, all the parameters are functions of X, in particular, J+ = J+(• where X(s) is a 
periodic function of period d which is discontinuous in the general case when s = kd (k = O, 

• ...). The breaks are caused by discontinuities on the leading edges of the profiles. 
With a known X(S) the construction of the discontinuity reduces to the solution of the equa- 
tions [8] 

s = + + s = .  + + o( D, 

dS/dn = [%(s-) + X(s+)]/2 + O(e ~) ( 1 . 7 )  

with estimates of the errors (s = S(n) is the equation of the discontinuity) which are uni- 
form in n. When S(0) = O, Eqs. (1.7) determine S and s • as functions of n. Then one can 
find the intensity of a discontinuity from s • with the help of (1.6). After this (see be- 
low) the parameters of the advancing flow are determined from the distributions on aa ~ and 
the flow between adjacent discontinuities is found from (i.i), (1.4), and (1.5) and the 
equation of almost rectilinear c+-characteristics 

s = 8o + nz (8o) + o (1.8) 

In the general case the system (1.7) is solved numerically; it is convenient to use in- 
stead of the first two Eqs. (1.7) the result of their differentiation with respect to n and 
the elimination of dS/dn. The resulting equations are of the form 

as• = [2 (1 + -1 + o ( 1 . 9 )  

w h e r e  X • = X(s • and  Xs = d x ( s o ) / d s o .  I n  t h e  c a s e  u n d e r  d i s c u s s i o n  Xs > O. 

With a linear dependence of• on So the system (1.9) is integrated. Actually, subtract- 
ing the second (with the lower subscripts) Eq. (1.9) from the first one and multiplying the 
result by Ks E--gXo/d, we obtain the equation 

d(6x)/dv = (i + ~5Xo)-16Xo + O(e a) (v = n/d). 
Having integrated it from v = 0, where 6 X = ~Xo, and switching from ~X to 5p, we find that in 
this case 

+o( D ( 1 . 1 0 )  
6P 0 

w h e r e  w = i / p ,  ~ p p  = ( 3 2 ~ / ~ p 2 ) o ,  and  one  c a n  c a l c u l a t e  t h e  q u a n t i t i e s  w i t h o u t  s u b s c r i p t s  ( e x -  
c e p t  6P) f rom t h e  p a r a m e t e r s  a s  n § ~ F o r  a p e r f e c t  gas  a = 1 + x ,  w he r e  • i s  t h e  a d i a b a t i c  
e x p o n e n t ,  and  ( 1 . 1 0 )  r e d u c e s  t o  t h e  w e l l - k n o w n  f o r m u l a s  o f  [5 ,  10,  1 1 ] .  F o r  a n y  n o n l i n e a r  
d i s t r i b u t i o n  •  t h e  d i s t r i b u t i o n  o f  X o v e r  s becomes  l i n e a r  a s  one  moves  away f rom t h e  c a s -  
c a d e .  T h e r e f o r e  i f  ~ i s  t h e  d i s t a n c e  f rom t h e  c o r r e s p o n d i n g  c r o s s  s e c t i o n  a nd  6po i s  t h e  i n -  
t e n s i t y  o f  t h e  d i s c o n t i n u i t y  i n  i t ,  ( 1 . 1 0 )  g i v e s  t h e  l o n g - r a n g e  f i e l d  f o r  a n y  d i s t r i b u t i o n s  
on a s ~  A c c o r d i n g  t o  t h e  c a l c u l a t i o n s  o f  [ 5 ] ,  i n  t y p i c a l  s i t u a t i o n s  a l i n e a r  d e p e n d e n c e  o f  
X on  s i s  e s t a b l i s h e d  i n  3 -4  s t r i p s  on n .  

The c o n d i t i o n  o f  c o n s e r v a t i o n  o f  J+  on  t h e  c + - c h a r a c t e r i s t i c s ,  w h i c h  t o g e t h e r  w i t h  ( 1 . 1 ) ,  
( 1 . 4 ) ,  a n d  ( 1 . 8 )  d e s c r i b e s  t h e  f l o w  b e t w e e n  d i s c o n t i n u i t i e s ,  i s  e q u i v a l e n t  t o  t h e  e q u a t i o n  

OY+/On + %Od+lOs = O. 

Since J+ = J+(X) with d +X ~ dd+/dx = (Xd)-X # O, having divided it by J+X, we obtain 

~zl~n + %azlas : 0. (i. ii) 

I f  F i s  a c l o s e d  c o n t o u r  o f  t h e  s n - p l a n e ,  (1.1l)  and  t h e  l a s t  Eq.  ( 1 . 7 ) ,  w h i c h  d e t e r m i n e s  t h e  
direction of the discontinuity, follow from the "integrated conservation law" 

%ds -- ~ d n  = 0. ( 1 . 1 2 )  

r 

The "area rule" [7, 8], which permits constructing discontinuous solutions without numerical 
integration of (1.7) and (1.9), is valid for (1.12). 

In any method of constructing a solution in front of a cascade the parameters with a minus 
subscript, which correspond to a uniform advancing flow (theoretically as n § ~) are found, 
just as in [3-5], using the distributions at n = 0 from the integrated conservation laws of 
mass, momentum, and energy written for a closed contour formed by adjacent discontinuities 
and segments of the s axis of length A(s/d) ~ A~ = i for n = 0 and n § ~. At n = 0 the param- 
eters of the flow satisfy, as everywhere, the condition 2io + V~ = 2Io with a constant Io and 
with ~o = ~o(~) ~ ~(5, 0). With this taken into account the enumerated laws take the form 
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R_=~R o(~)dE, 2i_+V~_= 210, (1. 13) 
0 

where R is a vector with the components pVsin0, pY2sin20, andp + pV2sin28. 

With known righthand sides the system (1.13) along with the equation of state i = i(p, p) 

uniquely determines the supersonic (M_ ~ i) advancing flow, in particular, o_ and J[. In 

the problem under discussion the discontinuities form small angles with the c+-characteris - 
tics. Therefore the intensity of each discontinuity on a length of the order of d varies by 
0(c2), and the overall nonuniformity in o and J- as aa ~ obtained due to the action of all the 
discontinuities is O(c~). This is in agreement with the fact that ~Oo and ~J7 are also 0(~). 

And so one can replace the nonuniform distributions of o and J- at n = 0 to within any ac- 
curacy of s~ inclusively with constants oo and J~ which differ from o_ and J~ by O(s~). The 
increase of o characterizes the irreversible losses in the discontinuities (Oo > o_). The 
error, smaller than in the entire semi-inflnite strip, of a solution of the simple wave type 

on the entrance section afga~ of the intervane channel is a consequence of its finite (of the 

order of d) dimensions. 

What has been said justifies the partial replacement of the direct problem by the inverse 
one. In the latter instead of o_ and JZ, oo and Jo are fixed, whose specification along with 

Io H I_ permits constructing in the simple wave approximation a flow in afga~ Precisely 
this approach has been adopted in [3], in which it is true that not J[ but the point b was 
specified. The parameters of the advancing flow (as n § ~) are determined from the distribu- 
tions found from (1.13) on aa ~ and the wave structure which arises in front of the cascade is 
constructed within the framework of the ANA. Since the advancing flow is characterized by 
four parameters, let us assume, p_, p_, M_, and @_ or B_, and the solution depends only on 
three constants Io, Oo, and JT, one of the parameters, for example e-, turns out to be a 
function of the other three. This means that in blocking regimes the cascade exerts a direct- 

ing action on the flow in front of it. For a perfect gas Io and oo only give the velocity, 
pressure, and density scales for a fixed • and a specified cascade 0_ = f(M_). The indicated 

property (see [1-4]) is not related to the simplifications introduced into the method of solu- 
tion. 

Two methods were used to construct the flow in the remaining part of the intervane chan- 
nel. Numerical solution on layers x = const using the straight-through version of the differ- 
ence scheme of [13, 14] lies at the basis of the first method. The segment ca ~ but not the 
shock waves or the characteristics a~ and fg, which are not known in advance, was taken as 
the cross section of the initial data for simplification of the numerical algorithm. The 
second method was based on linearization of the equations of the characteristics (1.2). The 
linearization was performed with respect to a supersonic translational flow with parameters 
equal to the parameters on ba~ to which the subscript "b" is affixed. After linearization 
all the characteristics of the same kind have the identical slope, and the parameters are dis- 
continuous on those which replace compaction discontinuities or rarefaction bunches. The 
linearized invariants introduced in accordance with (1.2) by one of the two methods: 

J~ =~4-Bp, " ] • 1 7 6  B=/M--~- - i / (pV2)~ ,  B ~  (1. 14) 

a r e  c o n s e r v e d  a l o n g  t he  c h a r a c t e r i s t i c s  ( i n c l u d i n g  a t  an i n t e r s e c t i o n  o f  d i s c o n t i n u i t i e s  -- 
the  c h a r a c t e r i s t i c s  of  the  o p p o s i t e  f a m i l y ) .  The f i r s t  method c o r r e s p o n d s  to  o r d i n a r y  l i n e a r i -  
z a t i o n .  The second  one d i f f e r s  in  t h e  r e p l a c e m e n t  o f  p by u = i n  p ,  wh ich ,  as  i s  w e l l  known 
[15], reduces the errors of the linear theory at moderate supersonic velocities. The other 
equations (of constant entropy, constant energy, state, and so on) as well as the boundary 
condition B = B(x) on the profiles were not linearized. Although such refinements are out of 
order in "order of magnitude" estimates, in practice they always raise the accuracy of the 
results. 

Calculations using the constancy of the invariants (1.14) on segments of characteristics 
are performed using finite formulas and reduce to the sequential determination of parameters 
on the profiles and in specified cross sections. For thin profiles the use of the linear 
theory inside the cascade (including on the entire entrance section) does not contradict the 
necessity of drawing on ANA outside of it; the nonlinear effects are of a cumulative nature 
building up at large distances. 

For convenience in the subsequent exposition we shall change the orientation of the cas- 
cade and the y and n axes so that they are arranged as shown in Fig. lb. The points a, b, 

845 



2' 

o,j 

~Z 

I >\ 

�9 Y 

l ~  ~r j 

. .....-'""" 

Fig. 2 Fig. 3 

f 

... and the direction of the x and s axes coincide in Fig. la and b, and J+ and J- exchange 
roles. As has already been noted, the conditions downstream affect the section of the inter- 
vane channel to the right of fe. In Fig. ib their influence is brought about by specifica- 

tion of J- as n § ~. It is simpler here to invert the problem partially by specifying not J+ 
but J~. If the initial (at n = 0) intensity of the discontinuities emerging downstream is 
comparatively large and it is impossible to apply the linear theory and near n = 0 the ANA, 
the flow behind the cascade in the strip 0 ~-~ n ~no is calculated by the method of [13, 
14] with establishment inx. J- is specified on the streamline coming out of f, and three cas- 
cade spacings are sufficient for establishment in typical examples. Usually a region which 

occupies only barely more than a single spacing is calculated by the same method in a cal- 
culation on layers in the inverse formulation. This is done in order to form initial dis- 

tributions on the line n = no > 0 for ANA and the determination (using (1.13) with a plus 
subscript instead of a minus) of the parameters far downstream. In the linear approach the 

required distributions are obtained on the trailing front. 

Among the distinguishing characteristics of the flow behind the cascade one should refer 
first of all to the fact that the entropy o+ exceeds oo due to losses in the discontinuities. 
Secondly, behind the cascade weak discontinuities of the same family usually intersect. 
However, this does not complicate the analysis, since in ANA such intersections lead to a 
merging of discontinuities without the appearance of singularities of the other family. To 
sum up, formula (i.i0) is true far from the trailing front as before. 

2. The approaches described in Sec. 1 were implemented on a BESM-6 computer in programs 

adapted for calculation of the flow around single and so-called biplane cascades. The possi- 
bilities of these programs are demonstrated by the examples presented in Fig. 2. The dis- 

continuities which arise in connection, with streamline flow by a perfect gas with • = 1.4 
are plotted as thick lines in Fig. 2 for two single (Figs. 2a and b) and one biplane (Fig. 
2c) cascade, the symmetric doubly comvex profiles of which are formed by arcs of circles of 
radius r/d = 5 with a chord length I/d = I. The biplane cascade (Fig. 2c) is formed by two 
cascades of Fig. 2a shifted sl&ghtly ahead one of the other. The flow behind all the cascades 
in Fig. 2 was determined by specifying the right invariant on its trailing front: J+ = 2.08. 
In the case of Fig. 2a and c y = 30 ~ , and in the case of Fig. 2b y = 20 ~ . The calculated 
regimes were characterized by the following values of the Mach number and the angle 8 of the 
advancing flow: Fig. 2a, c) M_ = 1.7, 8_ = 4.15~ Fig. 2b) M_ = 2, 8_ = 3.33~ The ratio ~ 
P+/P_, where P is the retarding pressure, is somewhat higher for the biplane cascade (0.932) 
than for a single cascade (0.926). Comparing these values, one should bear in mind that p+/ 
p_ also differ in the calculated cases. The straight-through computation method was used 
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inside the cascade (to the right of ca ~ to obtain the results presented in Fig. 2. Calcula- 
tion of a single cascade with the number of cells across the channel N = 30, which provides 

for a constancy (upon the further increase of N) of no less than three significant digits in 

Z and in the parameters as n + • requires 2 min on a BESM-6. The analogous calculation of 

a biplane cascade with N = 80 in its two channels requires no more than 6 min. In the linear 

approximation these alternatives are considered with completely acceptable accuracy. This 
confirms Fig. 3, in which in the typical case the distributions of p found by three methods are 

plotted for two cross sections (x = x c -- curves i, and x = xf -- curves 2): solid curves -- by 
numerical integration according to [13, 14], dashed curves -- by the linear theory with re- 

placement of p by ~, and dotted curves -- without a replacement (yO is the distance from the 
lower profile relative to the channel height in a given cross section). The transition from 

p to ~ reduces the errors of the linear theory. 

The approaches and programs developed are applicable also in cases in which M n ~ IVsin~I/ 
a > 1 and the flow in front of the cascade front is not disturbed as well as in similar prob- 
lems on supersonic outflow from cascades of flat nozzles. If M n > 1 behind the cascade, the 
flow in general case contains discontinuities of both families. After the discontinuities 
become weak, their subsequent damping is described, as in [9, Ii], by ANA, the waves of the 
different families are discussed independently, and the overall distributions are obtained by 
their superposition. 

3. Without restricting ourselves later to regimes with M > i, we shall switch to the 
similarity laws for steady flow around cascades. In the case of thin profiles and values of M 
not close to unity their derivalion is based on linearizationof the equations and boundary 
conditions. It is sufficient for a cascade to consider the strip -~ ~ x ~ ~, 0 ~ y ~ ya ~ = 
d sin X, setting up in addition to the condition of no through-flow on the profiles the perio- 
dicity condition ~(x + Xao , Yao) = ~(x, 0) at x < 0 and x > l, where ~ is some parameter and 
Xao = d cos y. We shall restrict ourselves to affinely similar profiles: y = T/F•176 where 
x ~ = x/l, T is the relative deviation of the generatrices from the chord, and F• ~ are func- 
tions of the order of unity; a plus (minus) sign gives the upper (lower) generatrix of the 
profile located on the x axis; F+(0) = F_(0) and F+(1) = F_(1). For a stream.line flow with 

M_ > 1 and M n_ < 1 the similarity law obtained by the method described above reduces to the 
equations 

u '  = V _ k - l T u  ~ v ~ V _ T v  ~ p ,  = _ 2 -1 o 

p, = aL~p, ,  ~o = ~o (x o, yO, ~, n,  ]), 

X = p _ V ~ E - l x 2 1 X  ~ y = p _ V ~ - x z l y o ,  ( 3 . 1 )  

r162 ~=V'M~_~, yo=yk/l, 

= xoG,  = Va O /l, ] = 

w h e r e  u ,  v and  X, Y a r e  t h e  p r o j e c t i o n s  o f  Y and  t h e  f o r c e  a c t i n g  on  t h e  p r o f i l e  o n t o  t h e  x 
and  y a x e s  and  t h e  n o t a t i o n  u = u_ + u ' ,  . . . ,  i s  a d o p t e d  f o r u ,  p ,  a nd  p ," i n  t h i s  a p p r o x i m a t i o n  
u_ = V_. I n  b l o c k i n g  r e g i m e s  t h e  e f f e c t  o f  t h e  p a r a m e t e r  j i s  b o u n d e d  on t h e  l e f t  by  a d i s -  
c o n t i n u i t y  o r  t h e  c h a r a c t e r i s t i c  f e .  I n  u n b l o c k e d  r e g i m e s  w i t h  M_ > 1,  when t h e  i n d i c a t e d  
d i s c o n t i n u i t y  e m e r g e s  u p s t r e a m  ( t h i s  o c c u r s  f o r  s u f f i c i e n t l y  w i d e l y  s p a c e d  c a s c a d e s ) ,  j a f -  
f e c t s  t h e  e n t i r e  f l o w .  Howeve r ,  t h e r e  i s  no d i r e c t i n g  a c t i o n ,  a n d  one  c a n  t a k e  ~ = B_/T i n -  
s t e a d  o f  j a s  t h e  s i m i l a r i t y  p a r a m e t e r .  By v i r t u e  o f  ( 3 . 1 )  a s  w e l l  as  t h e  l i n e a r i z e d  c o n -  
s e r v a t i o n  l aws  ( 1 . 1 3 ) ,  we h a v e  i n  b l o c k e d  r e g i m e s  w i t h  d i s t r i b u t i o n s  on t h e  l e a d i n g  f r o n t  
w h i c h  s a t i s f y  ( 3 . 1 )  

-~ ~_IT ~__ v_l(V_T) = ~(~, n). (3.2) 

In order to check (3.1) and (3.2), calculations of the flow around six cascades with 
= ~/2 for different M_ were made with the help of the approach described in Sec. 1 with- 

out using the linearized relationships (1.14). Their results are given in Fig. 4 (a -- depen- 

dence of B_ in degrees on M_; b -- dependence of @ on n). Curves corresponding to cascades 
with the following values of y, d/l, and T are marked with numbers: i) 16.1 ~ , 0.9015, 0.025; 
2) 30~ i, 0.025; 3) 45 ~ , ~/2, 0.025; 4) 16.1 ~ , 0.09015, 0.0125; 5) 30 ~ , i, 0.0125; and 6) 
45 ~ , /3/2, 0.0125. It is evident that (3.2) groups the curves pertaining to different cas- 
cades within limits not exceeding • of ~. 

The similarity law (3.1), (3.2) obtained in the linear approximation provides no simi- 
larity of nonlinear damping of the wave structures far from the cascade. As one can show 
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in ANA, this requires constancy of K_ = %2(M4~)-2/~_ , where ~ is the same as in (i.i0), in 

addition to the similarity parameters from (3.1). This condition is obtained from an analy- 
sis of the equation in ANA which determines the slope of the rectilinear characteristics in 
the x~ ~ plane. In contrast to (3.1), constants which characterize the thermodynamics of 

the medium enter K_ through ~. For a perfect gas ~ = 1 + ~ and K_ = ~2[M~(I + x)~] -~3. In 
supersonic regimes with M n- > i, in which the flow in front of the cascade is not disturbed, 
it is convenient to replace j in (3.1) by @, as in unblocked regimes with M_ > i. The very 
same replacement is necessary (and~st convenient) in the case of a completely subsonic 

streamline flow. In addition % = #i -- M~ here. The corresponding similarity law which gen- 
eralizes the Prandtl--Glauert similarity law for a single profile is well known [16]. We note 

that due to the d'Alembert paradox IX~ = ~IY~ 

Now let a transonic flow occur around a cascade. Proceeding in the same way here as in 

[17], we find that in unblocked regimes 

u = a , ( l + T 2 i ~ - l f s u ~  v = a , ~ v  ~ p = p , - - v , ~ , ~  ~ ~ ,  

^ _~_~/31v0 ~0 ~0 ~), (3.3) X = ~  . 2 . 5 / 3 t y o  Y = V , ~ , ~  ~ , = ( ~ , N , K ,  

x ~ = x/Z  v ~ = v = Z o o / t ,  = Voo 

K = ( M _  - -  l ) ( T a )  - 2 / 3 ,  ~ = ~-/* 

w i t h  a f rom Sec.  1 (one o f  t he  e x p r e s s i o n s  f o r  ~ i n  [17] i s  n o t  t r u e ) .  

I f  t he  f low in  f r o n t  o f  t h e  c a s c a d e  i s  = u p e r s o n i c  and M n < 1, which  i s  u s u a l l y  s a t i s f i e d  
i n  t r a n s o n i c  r e g i m e s  f o r  y < ~ / 2 ,  ( 3 . 3 )  p r o v i d e s  s i m i l a r i t y  o f  t he  s h o r t - r a n g e  and l o n g - r a n g e  
f i e l d s ,  as  one can show. I n  b l o c k i n g  r eg imes  ~ becomes a f u n c t i o n  o f  ~, q, and K, and X 0, yO, 
and the parameters behind the cascade (to the right of the so-called closing discontinuity for 

M < 1 and of fe in the opposite case) become functions not of ~ but of ~ = (p+--p,)~/~/ 
(~,~,r~) with p+ specified. In a supersonic outflow from a cascade with M n < 1 one can re- 
place the parameter ~ by j from (3.1). Although approaches different from those developed 
in Sec. 1 (see [18]) are required for calculation of transonic regimes, the supersonic long- 

range fields are also described here by ANA. 

The similarity laws (3.1)-(3.3) are based on the assumption of smallness of the perturba- 
tions, which is frequently violated in some local regions. The neighborhoods of blunt leading 
edges, and in the cases of sub- and transonic streamline flow -- the critical points (including 
the trailing edges around which flow occurs according to the Chaplygin--Zhukovskii scheme) and 
leading sharp edges, are the same in all regimes. Here (3.1) and (3.3) naturally do not oc- 
cur. Moreover, even if such singularities have no effect on the fields of parameters far from 

them, their action on the integrated characteristics may be noticeable (for example, due to 
an inflow force on the leading edge), causing deviations of X and Y from (3.1) and (3.3). 

The authors are grateful to A. B. Vatazhin for the advice to include the linear approxi- 
mation algorithm and to V. A. Vostretsovaya for help in the research. 
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